

# Digital Laboratory Analogues for 3D Printed or Milled Models During CAD/CAM Procedures

Southern Implants' Digital Laboratory Analogues are a part of the SIDigital comprehensive solution for CAD/CAM procedures. Digital Laboratory Analogues are intended to be used as dental implant replicas inserted into a 3D printed or a milled model to duplicate the location, orientation, and restorative platform of the implant placed in the mouth during CAD/CAM procedures. Southern Implants' Digital Laboratory Analogues are manufactured from titanium, available in multiple connections and supplied as two-pieces; the Analogue that matches the prosthetic diameter of the implant and a screw to secure the analogue in the model.

#### **Intended Use**

Southern Implants' digital laboratory analogues are intended to be used as dental implant replicas that has to be inserted into a 3D printed or a milled model in order to duplicate the location, orientation, and restorative platform of the implant placed in the mouth during CAD/CAM procedures.

#### **Description**

Digital laboratory analogues are pre-manufactured components and are available in different connections. The items are to be fitted into a 3D printed or a milled model. Digital analogues are manufactured from Titanium, and are a two-piece component. The main component is anodized to match the prosthetic diameter of the implant being restored, and is supplied with a screw to secure the seat of the analogue in the model.

NOTE: Southern Implants digital analogues are for single use only. Re-use of the analogue can result in loss of accuracy.

#### **External Hex**



Order Number LAD-IP
Scan Flag SFT-EX-30
to be used with Ø3.0mm External Hex Implant



Order Number LAD-IBN Scan Flag SFT-EX-34 to be used with Ø3.25mm External Hex Implant



**Driver Order Number** I-HD-M (1.22 hex)



Order Number LAD-BA Scan Flag SFT-EX-50 to be used with Ø5.0mm External Hex Implant & MAX-7



Order Number LAD-BBB
Scan Flag SFT-EX-60
to be used with Ø6mm External Hex Implant & MAX-8

**TRI-NEX®** 



Order Number LAD-L-35
Scan Flag SF-EL-35
to be used with Ø3.5mm TRI-NEX implant



Order Number LAD-L-43 Scan Flag SF-EL-43 to be used with Ø4.3mm TRI-NEX implant



Order Number LAD-L-50 Scan Flag SF-EL-50 to be used with Ø5mm TRI-NEX implant & TRI-MAX®-7



Order Number LAD-L-60 Scan Flag SF-EL-60 to be used with  $\emptyset$ 6mm TRI-NEX implant & TRI-MAX®-8 & 9



**Driver Order Number** I-HD-M (1.22 hex)

### **DC** Range



Order Number LAD-DC3
Scan Flag SF-DC3
to be used with Ø3mm Deep Conical implant



Order Number LAD-DC4
Scan Flag SF-DC4
to be used with Ø3.5mm & Ø4mm Deep Conical implant



Order Number LAD-DC5 Scan Flag SF-DC5 to be used with Ø5mm Deep Conical implant



**Driver Order Number** I-HD-M (1.22 hex)

## Internal Hex Range (M-Series & PROVATA™)



Order Number LAD-M Scan Flag SF-M to be used with Ø3.7mm / Ø4.2mm / Ø5mm Internal Hex implants (M-series)

& Ø4mm / Ø5mm PROVATA

& Ø6mm PROMAX $^{\circledR}$  implants



Order Number LAD-Z Scan Flag SF-Z to be used with Ø7mm / Ø8mm / Ø9mm PROMAX<sup>®</sup> implants



**Driver Order Number** I-HD-M (1.22 hex)

### IT (Internal Octagon) Range



Order Number LAD-ITS Scan Flag SF-IT to be used with Ø4.8mm IT implants & MAXIT7



Order Number LAD-IT6 Scan Flag SF-IT6 to be used with Ø6.5mm IT implants & MAXIT8 & 9



**Driver Order Number** I-HD-M
(1.22 hex)

### **Abutment Level (Compact Conical Abutment)**



Order Number LAD-MC Scan Flag SF-MC-48 to be used with Ø4.8mm platform Compact Conical Abutments



Order Number LAD-MCW
Scan Flag SF-MC-60
to be used with
Ø6mm platform Compact Conical Abutments



**Driver Order Number** I-HD-M (1.22 hex)

#### **Procedures:**

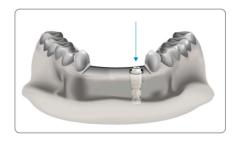
- 1. The implant position is obtained digitally by an intraoral scan of the patient with the Scan flag attached to the implant.
- 2. Remove the Scan flag from the implant/s, and replace with healing abutment/s.
- 3. The scan is then imported into the design software.

### **Design Procedures:**

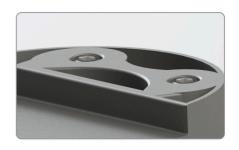
- 4. The Scan flag in the digital form is now matched and aligned with the corresponding Scan flag in the library.
- 5. Model design software is chosen and the digital laboratory analogue is positioned digitally in the model.
- 6. The software will guide the user through the steps to design and complete the model.

#### Milling Procedures:

- 7. The digital stl file of the model is sent to a 3d printer or a milling machine to print/mill.
- 8. The digital analogues are inserted from the top into the open channel of the 3d printed/milled model. A soft tissue model is always recommended.
- 9. The model is turned upside down, and the screw is inserted apically and finger tightened with a 1.22mm hex driver to the analogue. This will secure the analogue into the printed or milled model.


#### Notes:

– The digital analogue must be used with the corresponding digital analogue in the libraries. – The screw must not be torqued – only finger tightened.


Material:

Digital lab analogue: Titanium

Digital lab analogue screw: Stainless steel



The digital analogue is inserted into the channel from the top of the model.



The model is turned upside down and a hex driver (I-HD-S/M/L) is used to secure the analogue to the model with the analogue screw.



Completed soft tissue model with apical screws inserted into the model.